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Abstract
Purpose – The purpose of this paper is to show how elements from queueing theory can be used to
obtain objective measures of effective capacity in the triage function at Skaraborg Hospital in Sweden
without direct observation of the function itself.
Design/methodology/approach – Approximately 30,000 patients arrived to the emergency
department at Skaraborg Hospital in Sweden during 2011. The exact time of arrival and the exact time
of triage were recorded for each patient on an individual level. Basic queueing theory uses arrival rates
and system capacity measures to derive average queueing times. The authors use the theoretical
relation between these three measures to derive system capacity measures based on observed arrival
rates and observed average queueing times.
Findings – The effective capacity in the triage process is not a linear function of the number of nurses.
However, the management of capacity seems well adapted to the actual demand, even though service
levels vary substantially during the day and night.
Originality/value – This paper uses elements from queueing theory in an innovative way to measure
the effective capacity of a service process without direct observation, thereby also avoiding the
potential risk of the Hawthorne effect.
Keywords Performance measurement, Performance management, Emergency department,
Sweden, Performance monitoring, Queueing theory, Triage function, Hawthorne effect,
Capacity measurement
Paper type Research paper

1. Introduction
The concept of capacity is central to operations management. For example, in
production planning, evaluations of changes in processes and in productivity
measurements, it is crucial to have a reliable methodology for measuring the available
capacity of the operation. This is especially true in the service sector (Sasser, 1976;
Fitzsimmons and Fitzsimmons, 2008), and thus also in the control of health care
organizations (Bamford and Chatziaslan, 2009).

Capacity is traditionally defined as the maximum potential output of a process
during a specific period, for example, the number of cars manufactured per week or the
number of patients treated per day. In this regard, capacity has nothing to do with
actual output. Capacity can also be defined functionally in terms of design and effective
capacity. Design capacity refers to the maximum output of a process under ideal
conditions, that is, the output a process is designed to achieve at full utilization of
productive time. Effective capacity is the maximum output of a process under normal
conditions. Design capacity is always greater than effective capacity, and the difference
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between them can be explained by productive time under normal conditions being used
for things such as shifts in production, on-going maintenance, and breaks. Effective
capacity in a process can conventionally be calculated as design capacity multiplied by
the proportion of the productive time, which is utilized under normal conditions
(Russell and Taylor, 2006).

In processes that produce a limited number of standardized products or services,
capacity in terms of output is relatively easy to define and measure. It becomes more
complicated to measure capacity in terms of output when the mixture of products or
services produced in the process becomes more complex. Capacity during a specific
period is then dependent on the mixture of products demanded during the period.
In such cases, it can be more appropriate to define and measure capacity in terms of
input (Slack et al., 2010). Within health care, for example, capacity is commonly
measured in terms of the number of hospital beds (Kuntz et al., 2007). However, this
definition of capacity can be called into question, since the time dimension is ignored.
According to the definition above, the number of hospital beds does not become a
capacity measurement until it is combined with, for example, the number of patients
treated per day (Schroeder, 1993).

The design capacity of a process under different assumptions can often be calculated
without too much trouble, but the true level of the effective capacity can be more difficult
to measure. The reason is primarily that it is difficult to know what normal conditions
actually are. An alternative to the above standard calculations of effective capacity is to do
empirical measurements, through, for example, surveys or direct observations (Finkler
et al., 1993; Sittig, 1993; Bratt et al., 1999; Yen et al., 2009). However, the validity of such
results is questionable because of the potential risk of the Hawthorne effect (Roethlisberger
and Dickson, 1939; Franke and Kaul, 1978; Campbell et al., 1995; Wickström and Bendix,
2000). According to the Hawthorne effect, a process is affected by the fact that it is
observed. For example, staff might work either more or less efficiently than they would
under normal conditions because they know that their performance is being measured.

The objective of this paper is to develop a methodology based on queueing theory in
order to measure the effective capacity in a service process without direct observation of
the process itself, and to use the methodology to measure the effective capacity in the
triage process of the emergency department at Skaraborg Hospital in Sweden. The
methodology can be applied to any type of waiting line system that can be characterized
by queueing theory. Waiting line processes with such characteristics are perhaps most
frequent in service environments, such as emergency departments, supermarkets, banks,
and restaurants, but they are also common in traditional operations management,
in areas such as job shop scheduling, machine loading, and maintenance service.

As mentioned earlier, this paper measures the effective capacity in the triage process
of the emergency department at Skaraborg Hospital in Sweden. Historically, operations
management in hospitals has generally not relied much on queueing theory or other
analytic techniques from management science (Laffel and Blumenthal, 1989), despite
the fact that researchers have suggested many such approaches over the years.
However, during the subsequent decade, the use of queueing theory has increased in
health care (see Lakshmi and Sivakumar, 2013, for a review). For example, Green et al.,
(2006) evaluated the usefulness of queueing models in guiding emergency department
provider scheduling decisions. Izady and Worthington (2012) used elements from
queueing theory to propose an algorithm that seeks to stabilize the quality of services
delivered by all emergency care providers at all times, Koeleman et al. (2012) provided a
model to manage the personnel-planning problem in care-at-home service facilities in
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a stochastic setting based on Markov decision theory, Li and Glazebrook (2011) took a
Bayesian approach to the uncertainty generated by error prone triage and discussed
the design of heuristic policies for scheduling jobs for services to maximize the mean
number of jobs served, Bowers (2011) used elements from queueing theory to simulate
waiting list management and analyzes its connection to capacity planning, De Bruin
et al. (2007) showed how queueing theory could be applied to model emergency cardiac
in-patient flow, and Mayhew and Smith (2008) used queueing theory to analyze the UK
government’s 4-hour completion time target in accident and emergency departments.

Different formula expressions that represent key figures can be calculated,
depending on the assumptions regarding the context in which a queue occurs
(including the distribution of arrivals, the service process distribution, the number of
servers, etc.). For example, these key figures include the expected queue length,
expected waiting time, and expected number of “customers” in the system. As most
standard text books in the field show (e.g. Balakrishnan et al., 2007), such formulas are
in most cases based on two parameters, namely, the expected number of arriving
“customers” per unit time and the expected effective capacity, expressed as the number
of “customers” served per unit time. As a result, a practical measurement problem
when formulas for the analysis of queues are applied to a process is that the effective
capacity is assumed to be known.

The arrival rate and queue length (or queueing time) are variables that are usually
easy to measure objectively and empirically with high validity. In addition, the
relationship between arrivals, effective capacity, and queue length can be expressed
mathematically by known models. Therefore, it is possible to use empirical data for
arrivals and queue lengths associated with a particular service process to derive the
effective capacity of the process. In other words, if the average queue length can be
expressed mathematically as a function of arrival rate and processing rate, then it is
possible to express the average processing rate as a function of arrival rate and
the average queue length. Through empirical measurements of these two variables,
the processing rate in terms of the effective capacity of the system can be calculated.

The rest of this paper is organized as follows. In the next section, we show how
queueing models can be used to estimate capacity. After that, we use actual data from
the emergency department at Skaraborg Hospital to measure their effective capacity.
Finally, we conclude the paper, with recommendations for future research in this field.

2. Using queueing models to measure capacity
As indicated in the introduction, the idea here is to obtain an estimate of the effective
capacity in terms of the maximum number of jobs that, on average, can be processed
per period mð Þ. This estimate is a function of the estimated average number of
arrivals per period l

� �
and the estimated average waiting time in the queue Wq

� �
using the fact from queueing theory thatWq, under certain assumptions regarding the
arrival process and the service process, can be written as a function of λ and μ. When
estimates are used to sketch such a relation, it is of course only approximate. Since it is
possible to rearrange the formula Wq � f l;m

� �
to obtain a formula where

m� f l;Wq
� �

, we can use l and Wq to obtain m. As l and Wq can be estimated
independently of the service process, the effective capacity of the service process can be
estimated objectively, thus avoiding the Hawthorne effect.

The basis for the theoretical queue modeling formula used here is that arrivals are
assumed to follow a Poisson distribution and service times an exponential distribution
when the system consists of one server and the queue discipline is first-in, first-out
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(FIFO) with no reneging. Because both arrivals and service are Markovian processes
(i.e. they are stochastic processes with no memory of the past) and because there is only
one server, the model is called M/M/1 using Kendall notation. A vast array of different
assumptions regarding the arrival process, the service process, and/or other system
characteristics can be modeled (Gross et al., 2008; Mehdi, 2002).

Under the basic M/M/1 queueing model assumptions, a standard textbook in this area
will state that the average waiting time in the queue can be defined in terms of λ and μ as:

Wq ¼
l

m m�lð Þ (1)

Using the relationship in (1), the maximum number of jobs that, on average, can be
processed per period can be written as a function of the average waiting time and the
average number of arrivals:

m ¼ l=2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l=2
� �2þl=Wq

q
(2)

Using the same idea, expressions for μ¼ f (λ, Wq) can be obtained for other queueing
models. As long as there is only one server, as in models such as the M/M/1, the M/D/1,
the M/G/1, or the M/Ek/1, the formulas and their derivation are relatively simple. For
more than one server, the situation quickly becomes more complex, however. For the
M/M/2 model, for example, the average waiting time is defined in terms of λ and μ as:

Wq ¼
l2

4m3�ml2
(3)

Solving (3) for μ yields a relatively complicated formula:

m ¼ 1
2

l2Wq

31=3 9l2Wq
2þ

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27l4Wq

4�l6Wq
6

q� �1=3

0
BBB@

þ
9l2Wq

2þ
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27l4Wq

4�l6Wq
6

q� �1=3

32=3Wq

1
CCCA (4)

For some more complex queueing models, Wq¼ f (λ, μ) cannot at all be rearranged to
μ¼ f (λ,Wq), but they can often be used to measure capacity in a similar way by using a
simple trial-and-error algorithm to find the value of m that corresponds with the
empirically measured values of l andWq. Such an algorithm would still be in line with
the main idea in this paper; that the effective capacity in a service process can be
measured without direct observation of the process itself.

When one uses the point estimates l and Wq to obtain the point estimate m, one
would need to consider the combined uncertainty of l and Wq when creating a
confidence interval for the true effective capacity. However, using estimates of two
parameters to estimate a third parameter obviously escalates the uncertainty.
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Furthermore, because observed waiting times are dependent, it is not possible to derive
a simple expression for a confidence interval for the effective capacity based on the
observed waiting times. However, as long as the analysis is based on large quantities of
data, we know that a confidence interval for the effective capacity would be narrow.

3. The emergency department at Skaraborg Hospital
An emergency department is a medical treatment facility specializing in the acute care
of patients who arrive without prior appointment, either by their own means or by
ambulance. The emergency department at Skaraborg Hospital operates 24 hours a day
and had approximately 45,000 patient visits in 2011, of which approximately
15,000 arrived by ambulance. Arrivals to the emergency department comprised
approximately 65 percent of all arrivals at Skaraborg Hospital. The triage process at
the emergency department is an initial medical assessment of patients made by nurses
in which patients are categorized by urgency of need. In this process the queueing
discipline is strictly FIFO. The patient flow at Skaraborg Hospital through the
emergency department is illustrated in Figure 1.

The triage is a standardized process that follows a well-documented workflow with
clear guidelines, and so, it is reasonable to measure the capacity in terms of output
during a specific period.

The emergency department at Skaraborg Hospital is responsible for its own staff
planning with respect to assistant nurses, nurses, and secretaries, but not of doctors.
Responsibility for staff planning of doctors rests with the specialist departments. Staff
planning in the triage process is based on standard estimates of effective capacity.
A triage team consists of two nurses during the day, who are expected to serve, on average,
5.5 patients per hour. During the night, the triage is staffed by a single experienced nurse
who is expected to serve 3.5 patients per hour on average. A linear relationship between the
number of nurses and the number of patients served is assumed in the planning process at
the emergency department. In other words, a doubling of capacity during the day or night
is assumed to lead to a doubling of the number of patients served.

This case study is based on the empirical results from interviews with management
in the emergency department and a data set describing the arrival and queueing times
to triage for 30,000 arrivals to the emergency department during 365 days in 2011.
We have excluded the 15,000 patients who arrived at the emergency department by
ambulance as they are triaged in the ambulance on the way to the emergency
department, and so do not queue for triage. Figure 2 shows the average number of
arrivals per hour to the emergency department during 2011.

As the number of arrivals is well known by management to vary during a 24-hour
period, the number of nurses in the triage also varies according to a schedule. Hence, the
expected capacity of the triage process in terms of the service time is not constant.
A potential problem when we apply queueing theory to analyze these data is that both the
service time itself and the variance in the service time vary over a 24-hour period. During

Emergency
admission

Emergency
Department
(The triage process)

Clinical ward

Home

Primary care

Discharge

Figure 1.
The patient flow

through the
emergency

department at
Skaraborg Hospital

77

Measuring
effective
capacity



the night, the triage is attended by a single, experienced nurse. However, during the day,
several nurses work in the triage. When there are two nurses, they work individually, but
when there are three or four nurses, they work in two teams. Hence, during the day, there
are always two “servers”, but there is only one “server” during the night. Thus, the basis
for our queue data analysis was M/M/1 during the night, and M/M/2 during the day.

Because arrivals to the ED obviously are cyclic, our overall analytic approach was the
well-established Lag stationary independent period-by-period (SIPP) method (Green,
2006; Green et al., 2001). The general idea behind Lag SIPP is that the regular SIPP
approach is unreliable in systems with time-varying arrival rates, as the time of peak
congestion lags the time of the peak in the arrival rate. For M/M/s queueing models, this
lag is well approximated by the average service time (Green, 2011). Thus, our observed
arrival rates were advanced by a guesstimation (based on our interviews with ED
management) of the average triage time, 15 minutes. Sensitivity analyses where arrival
rates were advanced 10 and 20 minutes, respectively, only yielded trivial differences.

First, we needed to ensure that the arrivals could be assumed to be Markovian
processes in the individual hours. Since the arrival frequency varies during the day, we
divided the day into 24 periods of one hour each and analyzed the Markovian
assumption for each hour individually with goodness-of-fit tests. These tests supported
the assumption of Poisson distributions in the individual hours. Hence, we proceeded
under the assumption that arrivals in each hour do reflect a Markovian process.

The next step was to use the observed average number of arrivals and the observed
average waiting time for each hour to estimate the average effective capacity for each
hour using the methodology presented in the previous section. Table I presents the
relevant estimates.

Figure 3 displays the hourly effective capacity. As expected, the estimated effective
capacity is higher during the day, and it seems relatively well adapted to variation in
the arrival process.

In Figure 4, the hourly estimated effective capacity is graphed alongside the actual
number of nurses. Not surprisingly, there is coherence, albeit far from perfect. At night, the
capacity is relatively high, while the capacity during the day does not increase in line with
the number of nurses. This can be explained by the fact that a triage team at night is
staffed by one experienced nurse who can perform all activities in the triage process and on
average cope with 3.5 patients per hour. During day time, a triage team is staffed by one
experienced nurse and one less experienced nurse, who can perform a part of all triage
activities. The triage team at day time serves on average 5.5 patients per hour. One
conclusion to be drawn from this is that doubling the number of nurses does not
necessarily lead to a doubled effective capacity in the triage process, as assumed in the
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planning process at the emergency department. It is also interesting to note the slowly
declining capacity at night. One explanation for this is that the nurse is not entirely
dedicated to the triage, when the number of arrivals to the emergency department
gradually decreases.

The conformity between effective capacity and number of nurses in Figure 4 seems to
be worst during the transition hours between day time and night time, when two nurses
are scheduled to work (i.e. between 7 a.m. and 11 a.m. and between 8 p.m. and 11 p.m.).
From discussions with management, we have found that probable reasons for this is that
day time nurses stay longer if demand is high or that nurses are borrowed for the triage
process from other parts of the hospital to work away the queue. Hence, in practice,

λ Wq μ

Hour Queue model Sample mean Sample mean
Estimated mean
(per server)

Estimated mean
(the system)

1 MM1 2.118 0.070 6.661 6.661
2 MM1 1.586 0.050 6.481 6.481
3 MM1 1.186 0.030 6.908 6.908
4 MM1 1.063 0.032 6.322 6.322
5 MM1 0.745 0.027 5.637 5.637
6 MM1 0.674 0.032 4.939 4.939
7 MM1 0.751 0.044 4.506 4.506
8 MM2 1.403 0.062 2.077 4.154
9 MM2 2.501 0.078 2.908 5.816
10 MM2 3.688 0.096 3.628 7.256
11 MM2 4.773 0.114 4.196 8.392
12 MM2 5.504 0.161 4.302 8.604
13 MM2 5.038 0.149 4.093 8.186
14 MM2 5.134 0.121 4.366 8.732
15 MM2 5.241 0.122 4.426 8.852
16 MM2 5.455 0.132 4.476 8.952
17 MM2 5.633 0.149 4.458 8.916
18 MM2 6.170 0.150 4.775 9.550
19 MM2 5.271 0.152 4.216 8.432
20 MM2 4.721 0.129 4.035 8.070
21 MM2 4.364 0.132 3.782 7.564
22 MM2 4.041 0.139 3.523 7.046
23 MM1 3.844 0.132 7.651 7.651
24 MM1 2.901 0.091 7.279 7.279

Table I.
Estimated effective
capacity measures
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the actual average number of nurses increases (decreases) continuously from two to
four (four to two) during the transition hours. The effect is clearly illustrated by
significant bumps in the curve in Figure 5, in which hourly estimated average effective
capacity per nurse is displayed, during the transition hours. A simple interpolation
would probably provide better estimates of the effective capacity numbers during the
transition hours.

In Figure 6, hourly estimated effective capacity in the triage process is compared to
the hourly average number of arrivals. Here the coherence is strong, which indicates
that the management of capacity is well adapted to the actual demand. Most of the time,
the average utilization revolves around 0.5, which means that there is generally enough
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capacity to deal with a demand up to twice the average level. However, during the late
part of the night, the utilization is significantly lower since there cannot be less than one
nurse working with triage, even during times when demand is low.

One problem that was addressed in discussions with the management of the
emergency department is that because arrivals have a Poisson distribution,
the variance in the number of arrivals varies during the day in the same way as the
mean. Hence it is unreasonable to have a constant excess capacity in the triage if the
required service levels are formulated in terms of a certain percentage of all patients
meeting a nurse in the triage within a certain time, for example “90% of all
patients shall meet the triage team within 10 minutes.”

A constant excess capacity in the triage process would cause service levels to vary
substantially during the day and night, and would be lowest when the number of
arrivals is highest, as shown in Figure 7.

If the goal is to achieve an equally high service level during the day and night, the
excess capacity must be dimensioned, given that the average demand (the number of
arrivals) varies. Excess capacity will then be highest when the number of arrivals
is highest.

4. Conclusions
Skaraborg Hospital is working on an increasingly advanced production and capacity
planning system and is dependent on a reliable methodology for measuring effective
capacity. According to the management of the emergency department, to date, the
effective capacity of the emergency department has been estimated using conventional
methods or by direct empirical observations. Hence, the proposed methodology in this
paper could be an appropriate alternative to these traditional methods for production
and capacity planning. The method can also be useful to evaluate the impact of
implemented changes in work procedures, the staffing plan, and so on, in terms
of effective capacity.

A number of highly relevant managerial conclusions can be drawn from the results
of the capacity estimates. The first is that a doubling of the number of nurses in the
triage does not double the effective capacity, contrary to common belief. The second is
that the notion, among politicians and other decisions makers, that a general increase in
resources is the standard solutions to many problems (Walley, 2013), such as long
waiting times, in the emergency department is not true. Instead, what is important is
where the additional resources will be delivered, when they will be delivered, and how
much should be delivered to ensure a certain service level. The third conclusion is that
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the excess capacity must be related to the arrival rates to achieve an equally high
service level during a 24-hour period.

This paper contributes to the literature in this field in two different ways. First, it
represents a contribution to the theory of capacity measurement by suggesting a
methodology through which the effective capacity of a service process can be estimated
objectively without direct observation, thereby also avoiding the potential risk of the
Hawthorne effect. The method can be used to estimate the effective capacity of most
service processes as long as the arrival process and the waiting times can be observed.
Second, we conducted a case study with real data to illustrate how the methodology can
be applied to obtain capacity measures for the operations management of a triage
process in an emergency room.

One limitation when applying the method is that it only gives valid results for
completely dedicated and standardized processes. In the case study, we can conclude
that the calculation of effective capacity becomes misleading during those times of day
when the nurses in the triage process perform duties that are not part of the triage
process. The corresponding measurement error occurs even when the nurses in the
triage process does not perform all stages in the triage process.

Another limitation of our results is that the assumption of exponential service times
is very unlikely to be true in practice. However, it is a common assumption in similar
studies where queueing models are used to analyze capacity in health care settings
(e.g. Green, 2006, 2011).

Future research in this area should be directed toward implementation of this
methodology in other types of processes. As long as the arrival process and the waiting
times can be observed, and the assumptions of a relevant queueing model are valid,
the idea can be used to estimate the effective capacity of any service process or
bottleneck. We see many possible applications, particularly in operations and logistics
management. However, to analyze more complex flows, more advanced queueing
models need to be used. Hence, for capacity measurement, the utilization of
queueing models other than the ones covered here should also be investigated.
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