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Abstract
Objectives: The objective was to derive and validate a novel queuing theory–based model that predicts
the effect of various patient crowding scenarios on patient left without being seen (LWBS) rates.

Methods: Retrospective data were collected from all patient presentations to triage at an urban,
academic, adult-only emergency department (ED) with 87,705 visits in calendar year 2008. Data from
specific time windows during the day were divided into derivation and validation sets based on odd or
even days. Patient records with incomplete time data were excluded. With an established call center
queueing model, input variables were modified to adapt this model to the ED setting, while satisfying the
underlying assumptions of queueing theory. The primary aim was the derivation and validation of an ED
flow model. Chi-square and Student’s t-tests were used for model derivation and validation. The
secondary aim was estimating the effect of varying ED patient arrival and boarding scenarios on LWBS
rates using this model.

Results: The assumption of stationarity of the model was validated for three time periods (peak arrival
rate = 10:00 a.m. to 12:00 p.m.; a moderate arrival rate = 8:00 a.m. to 10:00 a.m.; and lowest arrival
rate = 4:00 a.m. to 6:00 a.m.) and for different days of the week and month. Between 10:00 a.m. and 12:00
p.m., defined as the primary study period representing peak arrivals, 3.9% (n = 4,038) of patients LWBS.
Using the derived model, the predicted LWBS rate was 4%. LWBS rates increased as the rate of ED
patient arrivals, treatment times, and ED boarding times increased. A 10% increase in hourly ED patient
arrivals from the observed average arrival rate increased the predicted LWBS rate to 10.8%; a 10%
decrease in hourly ED patient arrivals from the observed average arrival rate predicted a 1.6% LWBS
rate. A 30-minute decrease in treatment time from the observed average treatment time predicted a 1.4%
LWBS. A 1% increase in patient arrivals has the same effect on LWBS rates as a 1% increase in treatment
time. Reducing boarding times by 10% is expected to reduce LWBS rates by approximately 0.8%.

Conclusions: This novel queuing theory–based model predicts the effect of patient arrivals, treatment
time, and ED boarding on the rate of patients who LWBS at one institution. More studies are needed to
validate this model across other institutions.
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Emergency department (ED) crowding has
received considerable national attention in
recent years.1,2 From 1996 to 2006, the annual

number of ED visits in the United States increased
nearly 32%, from 90.3 million to 119.2 million, while the
number of hospital EDs decreased nearly 5%.3 The
holding in the ED of patients admitted to the hospital

(ED boarding) has also been noted to be a growing
problem and is a large contributor to ED crowding.4

ED crowding is known to increase patient wait times.4–6

From 1997 to 2004 and then to 2006, the median wait
time to see a physician increased from 38 to 47 to
56 minutes, an increase of 36%.7 As wait times increase,
the rate of patients who leave without being seen
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(LWBS) also increases.8–14 ED patients who leave with
being evaluated by a physician are at risk for poorer
health outcomes,10,13,15 represent a source of lost reve-
nue for hospitals,16 and decrease patient satisfaction.10

For these and other reasons, research efforts have been
directed at predicting ED patient load volumes to
inform real-time operational interventions with the
objectives of managing surge conditions, crowding, and
wait times. Various approaches to forecast ED patient
volumes have been proposed and studied.17–22 However,
no approach has been demonstrated to reliably define
crowded conditions when applied to diverse practice
settings23 or to reliably outperform simple indices such
as bed occupancy rate.24 Some have proposed queueing
theory as a logical next step in modeling ED census and
crowding.2,25,26

Queueing theory makes basic assumptions about a
system to create mathematical equations that describe
system flow when there are variable inputs and fixed
resources. Derived in large part from the telecommuni-
cations industry, this methodology has a potentially use-
ful application to the ED setting, where patient flow
modeling could predict patient waits. Although many
service industry–related queuing models exist, applica-
tion to the ED setting has been limited.27–37 Previous
work has considered portable radiology workflow,28

meeting specific ED disposition time targets,31 ED staff-
ing,34 hospital bed resource allocation, priorities for
admission,35 revenue losses from LWBS patients,36 fast
track,37 and prehospital operations.38–41 None has been
used to predict patients who LWBS based on wait time
tolerance and ED crowding.

Therefore, our primary aim was the derivation and
validation of an ED flow model based on the novel mod-
ification of a queueing model commonly used in the call
center industry. The secondary aim was estimating the
effect of varying ED patient arrival and boarding sce-
narios on LWBS rates using this model.

METHODS

Study Design
The established queueing model M/GI/r/s + GI42

describes customer reneging (leaving system before

completing evaluation) after prolonged call center wait
times (see Table 1 for explanation of terms). It is the
most accurate available queueing model that describes
highly variable systems where multiple customers
(patients) are served (treated) in parallel, while allowing
customer reneging, multiple servers, and a finite waiting
room volume. Using this established call center queue-
ing model, we modified model input variables to adapt
this model to the ED setting (Table 1), while satisfying
the underlying assumptions of queueing theory. This
study was approved by the institutional review board.

Study Setting and Population
Data for all patients who registered at triage during cal-
endar year 2008 were collected from an urban academic
adult-only ED with an annual volume of 87,705 patients,
using the institution’s electronic medical record system
(Healthmatics ED, Allscripts, Chicago, IL). Visits with
missing or incomplete operational patient flow metric
data were excluded (n = 647). Time stamps for opera-
tional patient flow metrics obtained were: 1) patient
arrival time; 2) Emergency Severity Index triage acuity
score; 3) ED bed placement time; 4) patient time to
LWBS (this time stamp occurs when patient is called
from waiting area to be placed in ED patient treatment
area, but does not respond; most who leave do not
notify ED staff; the institution’s practice is to call the
patient three different times, and record a time stamp
for each attempt, and the patient is recorded as a LWBS
after third attempt; the first of these attempt time
stamps was used for our analysis, as an approximation
of the LWBS time); 5) total treatment time (time interval
from patient sign-in at triage to time patient is admitted,
discharged, transferred to another facility, leaves
against medical advice, or expires); and 6) ED boarding
time (defined as starting 2 hours after decision to admit
was documented).

Study Protocol
A complete description of the model derivation and
specification are provided in Data Supplement S1 (avail-
able as supporting information in the online version
of this paper). Briefly, as in the article by Whitt,42

we approximate the M/GI/r/s +GI model with the

Table 1
Summary of Queueing Model M/M/r/s + M(n) Inputs

Queueing
Model Term Call Center Application Modification for ED System

First M Interarrival times between calls to the system assumed
to follow an exponential distribution.*

Time between ED patient arrivals.

Second M Time speaking to call center agent follows an
exponential time distribution.

Treatment time (including boarding).

r Number of agents available to take calls. Total ED treatment space (bed) capacity.
s Maximum capacity of call center to accommodate calls. Waiting area capacity (i.e., maximum number

of patients who will wait for evaluation).
M(n) Caller waiting time tolerance distribution approximated

by an exponential distribution as a function of total
number of callers waiting.

Patient waiting time tolerance to see provider
calculated from a Weibull distribution.46

*Arrivals occur with a known average rate and the number of arrivals in some fixed time period are independent of the number
of arrivals in a nonoverlapping time period.20

940 Wiler et al. • QUEUEING THEORY CROWDING MODEL



established queueing model M/M/r/s + M(n) with inputs
adapted to describe ED patient flow (Table 1). Assump-
tions required to derive and specify the M/M/r/s + M(n)
model are described in Table 2. During the primary
study period, arrivals between 10:00 a.m. and 12:00 p.m.
were adequately stationary (i.e., stable patient flow) and
represented 12.3% of ED patient daily arrivals. We have
chosen this time period as our key period of study
because it has the largest arrival rate of the day for our
studied institution, as is demonstrated in Supplement
Figure 1. To evaluate stationarity of the arrival rate dur-
ing the study period we use a method similar to that of
Brown et al.43 who tested stationarity of arrivals in their
call center model. We tested for stationarity of arrivals
between 10:00 a.m. to 12:00 p.m., and at a 1% signifi-
cance level, we found no reason to reject the stationa-
rity assumption in 96% of the observed days.

In addition to these observations for stationarity dur-
ing each day, we have tested stationarity of arrivals
among different days. To do this, we divided all days
into 12 bins (each bin represents a month) to estimate
standard deviation of arrival rate in this period of time.
We used a Student’s t distribution with 11 degrees of
freedom to find 95% confidence intervals (CIs) for arri-
val rates, and we found that all arrival rates lie within
this 95% CI. Therefore, there is no reason to reject sta-
tionarity of arrival rates among different months of the
year. To further test stationarity, we also divided our
dataset into seven bins (each bin represents a day of a
week).

To validate our model we selected the 2-hour period
with a moderate patient arrival rate (8:00 a.m. to 10:00
a.m.) and the 2-hour period with the lowest arrival rate
(4:00 a.m. to 6:00 a.m.). Given these observations, we

believe that our defined study period is quite stationary
at the daily level within the prescribed time windows;
therefore, we can apply our queueing tools to analyze
patients’ LWBS behavior in this period. However, as
queueing models are heavily reliant on stationarity
assumptions, readers are cautioned both to test for
stationarity before applying the models of this article
in their settings and to realize that the results apply
narrowly for the modeled stationary period.

The number of ED treatment spaces at the study insti-
tution varied depending on the time of day, because the
fast track area was closed in the late evenings, and a
12-bed observation unit with one additional provider
could be used for ED boarding patients as a surge over-
flow for additional bed capacity when needed. To

Table 2
Required Assumptions and Inputs of a Queueing Theory Modeling

Required
Assumptions
and Inputs Description Methodology Application to Study ED

Stationarity Stable flow (i.e., rates of
arrivals and departures
are constant).

Models typically use a relatively
stationary period for service
demand (e.g., lunchtime
for fast food queueing analysis).

Arrivals between 10:00 a.m. and 12:00 p.m.
were adequately stationary for analysis.

Interarrival
and service
probability
distribution

Rate of arrivals and service
delivery.

Continuous standard distribution
models (e.g., lognormal, logistic,
Student’s t, Weibull, beta, etc) are
tested to determine the best fit.

Daily patient interarrival and ED length of
stay exponential distributions were
approximated using standard maximum
likelihood estimation methodology.47

Prioritization Order in which customers
are serviced.

Many (e.g., first-come first-serve,
first-come first-out, last-in
first-out)

Requires collapse of patient acuity
segmentation (e.g., emergency severity
index classification) into a single acuity
class in order to be mathematically
tenable.

Server Fixed capacity to service
customers.

Servers can be providers (e.g.,
bank teller) or space (e.g.,
number of ED beds).

Because fast track and observation areas
were used as needed in times of
crowding, a calculated “effective number
of beds” was used.

Queue capacity Describes how long the line
to receive services is or
can be.

Once this “capacity” is saturated,
all patients are diverted out
of system.

Waiting area capacity expanded
to accommodate walk-in patients but
finite capacity set to model ambulance
diversion.

Waiting time
tolerance

Assumed each customer
has a wait time tolerance
that is independent of
others waiting in the queue.

A general distribution is allowed
for tolerance.

The Weibull distribution was applied to
describe actual tolerance.
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Figure 1. Weibull distribution of patients’ estimated waiting
time tolerance.
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account for this, a fixed bed capacity r was approxi-
mated for the model and designated as the effective
number of beds. Thus, the number of “effective beds”
was defined as a fixed bed capacity using data from
odd days for the time period of 10:00 a.m. to 12:00 p.m.
(the same key time period used for the stationarity
assumption). The term “s” describes the total number of
patients who will wait for evaluation. It was assumed
that once this “capacity” is saturated, all patients are
diverted out of the system. Because this does not
account for walk-in patients, the modeled waiting
capacity was expanded to appropriately describe the
study ED walk-in volume. This is consistent with previ-
ous studies that have also modeled ambulance diversion
and excessive patient waits using a fixed waiting area
capacity estimate.44,45

Data Analysis
We used a Weibull probability distribution46 to describe
patient wait time tolerance (Figure 1). To predict
LWBS rates for the system, we modified the call center
M/GI/r/s + GI queueing model using a methodology
described by Whitt.42 Whitt developed an algorithm to
rapidly compute approximations for all of the standard
steady-state performance measures in the basic call cen-
ter queueing model M/GI/s/r + GI, which has a Poisson
arrival process, independent and identically distributed
service times with a general distribution, s servers, r
extra waiting spaces, and customer abandonment times
with a general distribution. Simulation experiments by
Whitt showed that the approximation is quite accurate
to predict abandonment in call center customers.42 In
this article, we have applied this algorithm to determine
the LWBS rate from our studied ED after finding and
calibrating the best fit distributions for interarrival,
treatment, and tolerance times. We used maximum like-
lihood estimation47 and the expectation maximization48

algorithms to identify distributional parameters of wait-
ing time tolerance and total “ED bed occupancy” (sum
of ED treatment and boarding time) to fully specify the
model.

Data were divided into derivation (odd dates) and val-
idation (even dates) sets. We divided the derivation data
set into 15 time-based bins spread across time (pattern
of bin 1 = days 1, 31, 61, 91, …; bin 2 = days 3, 33, 63,
93, …; bin 15 = 29, 59, 89, 119, …, etc. repeated through
365 days) and calculated the LWBS rate for each bin.
We used the derivation set to find the standard devia-
tion of the observed LWBS rate. We then used the esti-
mated SD to find a 95% CI for the predicted LWBS rate
of the validation set based on a Student’s t-test with 14
degrees of freedom, which is 95% CI = 0.41 to 6.92. To
validate our model, we used the validation data set to
compute input parameters of our model including aver-
age arrival rate and service and boarding times. Substi-
tuting for these parameters in our model we computed
predicted LWBS rate for the validation data set.
Because the predicted LWBS (2.75%) lies in the com-
puted CI, we did not find any evidence to reject validity
of our model. We also performed a secondary valida-
tion using data from weekends, determined a priori to
be a more homogeneous time period. Similar to the
previous validation test we computed a 95% CI for the

predicted LWBS rate of the validation set based on a
Student’s t-test with 14 degrees of freedom: 95% CI = 0
to 4.59 (which is quite different from the previous vali-
dation test since weekends are a more homogeneous
period). Again, our predicted LWBS rate (3%) from our
model lies in this CI, which provides no evidence to
reject validity of our model. We determined the effect of
ED patient arrival rates, treatment times, and boarding
on LWBS rates using the validated model.

RESULTS

To validate our model we selected a 2-hour period with
a moderate patient arrival rate (8:00 a.m. to 10:00 a.m.,
total arrival of 8,304 patients, 9.5% of all ED visits) and
a 2-hour period with the lowest arrival rate (4:00 a.m. to
6:00 a.m., total arrival of 4,239 patients, 4.8% of all ED
visits). As we mentioned earlier, the test described by
Brown et al.43 demonstrated that arrivals in these peri-
ods were stationary, so we could apply our model to
predict LWBS rate in these periods. Using the same
methodology for each of these periods, we found that
for the time period of 8:00 a.m. to 10:00 a.m., the 95%
CI for LWBS rate on even days is 95% CI = 0 to 5.25.
Since our model prediction is 1%, which lies in this
interval, there is no evidence to reject our model predic-
tion. Similarly for the period of 4:00 a.m. to 6:00 a.m.,
the CI for the LWBS rate on even days is 95% CI = 0 to
5.65. Since our model prediction (2%) lies within this
interval, again there is no evidence to reject our model
prediction.

We also performed a secondary validation test using
data from weekends. We used arrivals on Saturday as
the derivation set to calibrate our model and compute
95% CI for the predicted LWBS rate of the validation
set (which is arrivals on Sunday) based on a Student’s
t-test with 14 degrees of freedom. For the period of 8:00
a.m. -10:00 a.m., the 95% CI for LWBS rate on Sundays
is 0 to 4.25. Since our model prediction is 2%, there is
no evidence to reject our model prediction. Similarly,
for the period of 4:00 a.m. to 6:00 a.m., the LWBS rate
on even days is 95% CI = 0.15 to 6.65, which includes
our model prediction of LWBS rate on Sundays, so
there is no evidence to reject our model prediction.

Estimating the Effect of ED Patient Arrivals and
Boarding on LWBS Rates Using a Novel Model
The effect of varying ED patient arrivals and boarding
on LWBS rates was determined using the key stationary
time period, defined as being between 10:00 a.m. and
12:00 p.m. (i.e., peak patient arrival time; see Table 2 for
definition), when 4.1% of patients (n = 418) LWBS by a
provider. The mean (�SD) wait time tolerance for the
system (i.e., actual study ED population) during this
time period was 10.68 (�7.76) hours. The actual versus
model-predicted LWBS rates are presented in Table 3.
The average wait time to see a provider using the model
was 85 minutes, which was very close to the actual
average wait time of 89 minutes.

The effect of ED arrivals by hour on LWBS rates is
provided in Figure 2. A 10% increase in hourly ED
patient arrivals from the observed average arrival rate
predicted a 10.74% LWBS rate. A 10% decrease in
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hourly arrivals from the observed average arrival rate
predicted a 1.6% LWBS rate. The duration of treatment
time also influences the rate of LWBS (Figure 3). Specif-
ically, a 30-minute decrease in treatment time from the
observed average treatment time predicts a 1.4% LWBS
rate. It was observed that a 1% increase in the rate of
ED patient arrivals has the same effect on LWBS rates
as a 1% increase in treatment time.

Reducing the number of admitted patients in the ED
who are waiting for an inpatient bed i.e., “boarding”,
notably reduces LWBS rates (Figure 4). Reducing
boarding times by 10% is expected to reduce LWBS
rates by approximately 0.8%, with a 50% reduction
expected to decrease the LWBS rate to 1.5% (from the
actual 4%) in the study ED.

DISCUSSION

Crowding is known to prompt patients to leave EDs
without being seen by providers. Numerous studies
have catalogued the characteristics of patients who
LWBS, but none has described a mathematical predic-
tion tool to help inform ED operations.8–15 Queueing
models lend themselves well to describing the ED
environment because they allow for the application of
simple equations to model patient flow. In most ED
applications these equations can be easily input into a
spreadsheet. At the most basic level, queueing systems
consist of four components: arrivals, servers, service
principles (described as the “queueing discipline” or
rules as to whom a server serves next), and the flow or
routing of the customer or item through the system.
These models then describe the effect of varying
demand on wait times, waiting tolerance, capacity, and
utilization metrics. A handful of queueing models have
been designed to describe ED patient flow29,31 and pre-
dict demand in the ED.27,30 However, none has been
ideal to describe the complex ED environment, nor
describe the effect of patient demand on LWBS rates.

Using our calibrated M/M/r/s + M(n) model (Table 1),
we found that ED LWBS rates climb in a predictable
and exponential way as the rate of ED patient arrivals
increases. This is not surprising, since as more patients
arrive per hour, the queue to be served (i.e., bed place-
ment in our model) grows, resulting in longer wait
times for patients. Strategies that obviate the need for
bed placement (e.g., treat and release by a provider in
triage) would be expected to have a positive effect on
LWBS rates, but these were not modeled in our study.
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Figure 3. Duration of treatment time influences LWBS rates.
LWBS = left without being seen.
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Figure 2. Effect of ED arrivals by hour on LWBS rates.
LWBS = left without being seen.

Table 3
Actual Versus Model Predicted LWBS Rates for Key Study Per-
iod (10:00 a.m. to 12:00 p.m.)

Quarter
Observed
LWBS

Modeled
LWBS

Lower 95%
CI Interval

Upper 95%
CI interval

1 6.7 9 3.7 9.7
2 3.3 2.1 0.3 6.3
3 3.5 4.8 0.5 6.5
4 2.6 2.9 0 5.6

Data are reported as percentages.
LWBS = left without being seen.
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The overall mean waiting time tolerance in our patient
population was nearly 11 hours, and indeed most
patients (93% of all arrivals to ED) stayed for treatment
rather than LWBS. Identifying the patient wait time tol-
erance distribution(s) was challenging because the study
data necessarily censored for those who remained in
queue and were ultimately evaluated by a physician.
Our ED is located in an urban center and had notable
issues with crowding during the study period. It is not
known if the waiting time tolerance of patients at the
study institution were affected by the regular crowded
conditions or if the wait time tolerance mirrors that of
other ED populations. However, this is the first descrip-
tion of patient waiting time tolerance in the ED setting
to our knowledge.

What was surprising is the dramatic effect that
improved treatment (service) time is expected to have
on patients that LWBS. Our model predicts a decrease
of current LWBS rates from over 3.9% to 1.4% with a
reduction of 30 minutes in average service time. While
longer ED lengths of stay are known to increase LWBS
rates8–14 and decrease patient satisfaction,10 improve-
ments in length of stay trends may have dramatic
effects on those who would otherwise LWBS.

Reducing ED patient boarding directly improves
LWBS rates according to our model. This is consistent
with other studies that have found that ED boarding is
a significant contributor to ED crowding.4,49 The dem-
onstration of the impressive effects that ED boarding
has on LWBS rates may be valuable to ED and hospital
administrators as they attempt to prioritize ED opera-
tions change management strategies to minimize
patients who LWBS. It has been estimated that each
patient who LWBS represents $858 of lost charge reve-
nue to the institution.16 Tools such as our model, which
help to predict the effect on LWBS rates of various
interventions on arrival rates, treatment, and boarding
time, can be helpful not only to improve access to care
for emergency patients and to shield the institution
from possible medicolegal risk exposure, but also to
capture lost revenue.

LIMITATIONS

Although no system is directly analogous to the ED, call
centers are in many ways similar to ED systems. They
are nonstationary (i.e., nonconstant flow), have “triage”
in the form of the automated voice system that usually
guides one to an agent, and are complex environments
(with sizable caller and staff heterogeneity). Queueing
models have been shown to appropriately model the
call center environment,42 despite the assumptions that
the model(s) require (see Tables 1 and 2).

Queueing models require assumptions that 1) cus-
tomer flow is unidirectional (patients move through the
system from one service to the next (queue) with no
unscheduled delays for resources other than the one
server they are queueing for), 2) arrivals are unpredict-
able (or predictable but unmanageable), and 3) the arri-
val rate of the system is stationary and constant over
time (i.e., stationarity). Patient arrivals of the modeled
system were relatively stationary on our study periods
from 4:00 a.m. to 6:00 a.m., 8:00 a.m. to 10:00 a.m., and

10:00 a.m. to 12:00 p.m. The final period (10:00 a.m. to
12:00 p.m.) has the largest arrival rate of the day for our
studied institution, as is demonstrated in Supplement
Figure 1, which shows total number of arrivals to triage
during a day and was the key period studied. Alto-
gether, we find that in any stationary period of time,
our model provides a reasonably good estimate of
LWBS rates, which demonstrates the clinical utility of
our method. We note that our model may not be used if
arrival to an ED is not relatively stationary; if applied to
another institution, our model could potentially result in
significant errors in its predictions.

A standard queueing model has an infinite capacity
and assumes that people will wait indefinitely, even if
there are thousands of people queued before them. We
felt that such a model was less realistic than one with a
finite capacity. Our model requires a fixed queue capac-
ity (s waiting room capacity), which was expanded to
describe the average walk-in traffic patterns of the
study ED. This model, like other queueing models, does
not accommodate a “no diversion policy.” This is con-
sistent with previous studies, which have also modeled
ambulance diversion and excessive patient waits using a
fixed waiting area capacity estimate.44,45

At times the study ED accommodated boarding
patients in the observation unit. The reality is that EDs
often have to expand their capacity, e.g., using hallway
beds, to care for patients during times of demand surge.
These practice variables based on capacity needs do not
lend themselves well to modeling. Therefore, we calcu-
lated an estimated number of beds (i.e., “effective num-
ber of beds”), which correlated well with our service
metrics (see Data Supplement S1).

Unfortunately, no previously reported queueing
model is ideal for the patient acuity prioritization of ED
patients. Currently a few queueing models describe
either multiclass (i.e., multiacuity) customers or reneg-
ing from a system,50,51 but none adequately describe
both. We attempted to address these issues without cre-
ating a mathematically complex and untenable model.
Because our primary aim was to specify a model that
predicted LWBS rates, acuity had to be collapsed.

At the time of this study, boarding time was defined
as beginning 2 hours after the admission order was
placed. This has been an area of national debate, with
the latest consensus now defining boarding time as
beginning contemporaneously with placement of the
admission order. Use of this most recent definition
would add 2 hours to our individual boarding times and
would affect our results accordingly.

We believe that our defined study period is quite
stationary at the daily level within the prescribed time
windows, and therefore we can apply our queueing
tools to analyze patients’ LWBS behavior in this period.
However, as queueing models are heavily reliant on sta-
tionarity assumptions, readers are cautioned both to
test for stationarity before applying the models of this
article in their setting and to realize that the results
apply narrowly for the modeled stationary period.

This model was derived and validated using data
from a single center and might have limited generaliz-
ability. However, despite the stated assumptions of our
model, we believe that it is a logical next step for the
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queueing models we already have, but note that addi-
tional work is needed to create mathematically stable
models that can take the realities of emergency practice
into account.

CONCLUSIONS

Creating mathematical models that adequately describe
the unique and complex flow of patients in the ED is chal-
lenging. We present a novel queueing theory that pre-
dicts patient wait times and quantifies the effect of ED
patient arrivals, treatment times, and boarding on leave
without being seen rates. Future studies are needed to
validate this model across various institutions.
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